? ? ?

深度學(xué)習(xí)與TensorFlow 2入門(mén)實(shí)戰(zhàn)百度網(wǎng)盤(pán)

Web3.0實(shí)戰(zhàn)視頻教程,帶你輕松掌握DApp開(kāi)發(fā)

Web3.0實(shí)戰(zhàn)視頻教程,帶你輕松掌握DApp開(kāi)發(fā)

深度學(xué)習(xí)與TensorFlow 2入門(mén)實(shí)戰(zhàn)

深度學(xué)習(xí)與TensorFlow 2入門(mén)實(shí)戰(zhàn)百度網(wǎng)盤(pán)插圖
立即下載

  • 視頻資源大?。?0.2 GB 更新時(shí)間:2023-09-16

深度學(xué)習(xí)與TensorFlow 2入門(mén)實(shí)戰(zhàn)資源簡(jiǎn)介:

課程適合于深度學(xué)習(xí)和人工智能方向新手,需要零基礎(chǔ)、快速、深入學(xué)習(xí)人工智能的朋友。

課程目錄

├──01.深度學(xué)習(xí)初見(jiàn)

| ├──課時(shí)1 深度學(xué)習(xí)框架介紹-1.mp4 14.30M

| ├──課時(shí)2 深度學(xué)習(xí)框架介紹-2.mp4 14.43M

| ├──課時(shí)3 開(kāi)發(fā)環(huán)境安裝-1.mp4 14.06M

| └──課時(shí)4 開(kāi)發(fā)環(huán)境安裝-2.mp4 16.89M

├──02.【選看】開(kāi)發(fā)環(huán)境全程實(shí)錄

| ├──課時(shí)10 Ubuntu平臺(tái)實(shí)錄-pycharm安裝.mp4 9.96M

| ├──課時(shí)5 win10平臺(tái)實(shí)錄-1.mp4 52.14M

| ├──課時(shí)6 win10平臺(tái)實(shí)錄-2.mp4 38.73M

| ├──課時(shí)7 Ubuntu平臺(tái)實(shí)錄-cuda安裝.mp4 22.28M

| ├──課時(shí)8 Ubuntu平臺(tái)實(shí)錄-anaconda安裝.mp4 15.04M

| └──課時(shí)9 Ubuntu平臺(tái)實(shí)錄-tensorlow、pytorch安裝.mp4 28.57M

├──03.回歸問(wèn)題

| ├──課時(shí)11 線(xiàn)性回歸-1.mp4 10.34M

| ├──課時(shí)12 線(xiàn)性回歸-2.mp4 15.23M

| ├──課時(shí)13 回歸問(wèn)題實(shí)戰(zhàn)-1.mp4 16.97M

| ├──課時(shí)14 回歸問(wèn)題實(shí)戰(zhàn)-2.mp4 15.95M

| ├──課時(shí)15 手寫(xiě)數(shù)字問(wèn)題-1.mp4 21.65M

| ├──課時(shí)16 手寫(xiě)數(shù)字問(wèn)題-2.mp4 11.86M

| ├──課時(shí)17 手寫(xiě)數(shù)字問(wèn)題-3.mp4 14.20M

| ├──課時(shí)18 手寫(xiě)數(shù)字問(wèn)題初體驗(yàn)-1.mp4 14.49M

| └──課時(shí)19 手寫(xiě)數(shù)字問(wèn)題初體驗(yàn)-2.mp4 28.96M

├──04.Tensorflow 2基礎(chǔ)操作

| ├──課時(shí)20 tensorflow數(shù)據(jù)類(lèi)型-1.mp4 16.91M

| ├──課時(shí)21 tensorflow數(shù)據(jù)類(lèi)型-2.mp4 16.23M

| ├──課時(shí)22 創(chuàng)建Tensor-1.mp4 14.90M

| ├──課時(shí)23 創(chuàng)建Tensor-2.mp4 14.47M

| ├──課時(shí)24 創(chuàng)建Tensor-3.mp4 9.67M

| ├──課時(shí)25 索引與切片-1.mp4 26.95M

| ├──課時(shí)26 索引與切片-2.mp4 29.09M

| ├──課時(shí)27 索引與切片-3.mp4 9.09M

| ├──課時(shí)28 索引與切片-4.mp4 35.02M

| ├──課時(shí)29 索引與切片-5.mp4 16.62M

| ├──課時(shí)30 維度變換-1.mp4 27.74M

| ├──課時(shí)31 維度變換-2.mp4 16.88M

| ├──課時(shí)32 維度變換-3.mp4 11.28M

| ├──課時(shí)33 Broadcasting-1.mp4 28.17M

| ├──課時(shí)34 Broadcasting-2.mp4 28.76M

| ├──課時(shí)35 數(shù)學(xué)運(yùn)算.mp4 18.88M

| ├──課時(shí)36 前向傳播(張量)-實(shí)戰(zhàn)-1.mp4 13.41M

| ├──課時(shí)37 前向傳播(張量)-實(shí)戰(zhàn)-2.mp4 13.80M

| ├──課時(shí)38 前向傳播(張量)-實(shí)戰(zhàn)-3.mp4 13.97M

| └──課時(shí)39 前向傳播(張量)-實(shí)戰(zhàn)-4.mp4 15.84M

├──05.tensorflow 2高階操作

| ├──課時(shí)40 合并與分割.mp4 18.40M

| ├──課時(shí)41 數(shù)據(jù)統(tǒng)計(jì).mp4 20.28M

| ├──課時(shí)42 張量排序-1.mp4 11.67M

| ├──課時(shí)43 張量排序-2.mp4 38.38M

| ├──課時(shí)44 填充與復(fù)制.mp4 17.45M

| ├──課時(shí)45 張量限幅-1.mp4 13.69M

| ├──課時(shí)46 張量限幅-2.mp4 17.44M

| ├──課時(shí)47 高階操作-1.mp4 13.17M

| └──課時(shí)48 高階操作-2.mp4 13.57M

├──06 神經(jīng)網(wǎng)絡(luò)與全連接層

| ├──課時(shí)49 數(shù)據(jù)加載-1.mp4 13.84M

| ├──課時(shí)50 數(shù)據(jù)加載-2.mp4 10.56M

| ├──課時(shí)51 數(shù)據(jù)加載-3.mp4 12.01M

| ├──課時(shí)52 測(cè)試(張量)實(shí)戰(zhàn).mp4 25.67M

| ├──課時(shí)53 全連接層-1.mp4 14.17M

| ├──課時(shí)54 全連接層-2.mp4 16.54M

| ├──課時(shí)55 輸出方式.mp4 16.51M

| ├──課時(shí)56 誤差計(jì)算-1.mp4 13.52M

| ├──課時(shí)57 誤差計(jì)算-2.mp4 13.00M

| └──課時(shí)58 誤差計(jì)算-3.mp4 40.68M

├──07 隨機(jī)梯度下降

| ├──課時(shí)59 梯度下降-簡(jiǎn)介-1.mp4 25.37M

| ├──課時(shí)60 梯度下降-簡(jiǎn)介-2.mp4 14.45M

| ├──課時(shí)61 常見(jiàn)函數(shù)的梯度.mp4 93.37kb

| ├──課時(shí)62 激活函數(shù)及其梯度.mp4 21.40M

| ├──課時(shí)63 損失函數(shù)及其梯度-1.mp4 10.78M

| ├──課時(shí)64 損失函數(shù)及其梯度-2.mp4 63.50M

| ├──課時(shí)65 單輸出感知機(jī)梯度.mp4 51.89M

| ├──課時(shí)66 多輸出感知機(jī)梯度.mp4 17.71M

| ├──課時(shí)67 鏈?zhǔn)椒▌t.mp4 18.26M

| ├──課時(shí)68 反向傳播算法-1.mp4 14.09M

| ├──課時(shí)69 反向傳播算法-2.mp4 14.13M

| ├──課時(shí)70 函數(shù)優(yōu)化實(shí)戰(zhàn).mp4 38.96M

| ├──課時(shí)71 手寫(xiě)數(shù)字問(wèn)題實(shí)戰(zhàn)(層)-1.mp4 32.39M

| ├──課時(shí)72 手寫(xiě)數(shù)字問(wèn)題實(shí)戰(zhàn)(層)-2.mp4 13.92M

| ├──課時(shí)73 手寫(xiě)數(shù)字問(wèn)題實(shí)戰(zhàn)(層)-3.mp4 26.51M

| ├──課時(shí)74 TensorBoard可視化-1.mp4 15.55M

| └──課時(shí)75 TensorBoard可視化-2.mp4 60.20M

├──08.Keras高層接口

| ├──課時(shí)76 Keras高層API-1.mp4 12.76M

| ├──課時(shí)77 Keras高層API-2.mp4 29.82M

| ├──課時(shí)78 Keras高層API-3.mp4 28.32M

| ├──課時(shí)79 自定義層或網(wǎng)絡(luò)-1.mp4 11.90M

| ├──課時(shí)80 自定義層或網(wǎng)絡(luò)-2.mp4 15.11M

| ├──課時(shí)81 模型保存與加載.mp4 17.07M

| ├──課時(shí)82 CIFAR10自定義網(wǎng)絡(luò)實(shí)戰(zhàn)-1.mp4 13.63M

| ├──課時(shí)83 CIFAR10自定義網(wǎng)絡(luò)實(shí)戰(zhàn)-2.mp4 36.15M

| └──課時(shí)84 CIFAR10自定義網(wǎng)絡(luò)實(shí)戰(zhàn)-3.mp4 22.94M

├──09.過(guò)擬合

| ├──課時(shí) 89 動(dòng)量與學(xué)習(xí)率.mp4 48.27M

| ├──課時(shí)85 過(guò)擬合與欠擬合.mp4 58.62M

| ├──課時(shí)86 交叉驗(yàn)證-1.mp4 28.18M

| ├──課時(shí)87 交叉驗(yàn)證-2.mp4 43.26M

| ├──課時(shí)88 Regularization.mp4 41.13M

| └──課時(shí)90 Early stopping,Dropout.mp4 57.83M

├──10.卷積神經(jīng)網(wǎng)絡(luò)

| ├──課時(shí)101 BatchNorm

| | ├──batchnorm.mp4 46.33M

| | └──batchnorm2 .mp4 47.42M

| ├──課時(shí)100 經(jīng)典卷積網(wǎng)絡(luò)VGG, GoogLeNet, Inception-2.mp4 45.25M

| ├──課時(shí)102 ResNet, DenseNet – 1.mp4 17.41M

| ├──課時(shí)103 ResNet, DenseNet – 2.mp4 18.37M

| ├──課時(shí)104 ResNet實(shí)戰(zhàn)-1.mp4 13.48M

| ├──課時(shí)105 ResNet實(shí)戰(zhàn)-2.mp4 14.31M

| ├──課時(shí)106 ResNet實(shí)戰(zhàn)-3.mp4 33.47M

| ├──課時(shí)107 ResNet實(shí)戰(zhàn)-4.mp4 62.48M

| ├──課時(shí)86 什么是卷積-1.mp4 20.39M

| ├──課時(shí)87 什么是卷積-2.mp4 14.99M

| ├──課時(shí)88 什么是卷積-3.mp4 41.25M

| ├──課時(shí)89 什么是卷積-4.mp4 12.93M

| ├──課時(shí)90 卷積神經(jīng)網(wǎng)絡(luò)-1.mp4 16.99M

| ├──課時(shí)91 卷積神經(jīng)網(wǎng)絡(luò)-2.mp4 16.01M

| ├──課時(shí)92 卷積神經(jīng)網(wǎng)絡(luò)-3.mp4 15.35M

| ├──課時(shí)93 卷積神經(jīng)網(wǎng)絡(luò)-4.mp4 15.31M

| ├──課時(shí)94 池化與采樣.mp4 10.78M

| ├──課時(shí)95 CIFAR100與VGG13實(shí)戰(zhàn)-1.mp4 13.45M

| ├──課時(shí)96 CIFAR100與VGG13實(shí)戰(zhàn)-2.mp4 13.87M

| ├──課時(shí)97 CIFAR100與VGG13實(shí)戰(zhàn)-3.mp4 14.24M

| ├──課時(shí)98 CIFAR100與VGG13實(shí)戰(zhàn)-4.mp4 10.59M

| └──課時(shí)99 經(jīng)典卷積網(wǎng)絡(luò)VGG, GoogLeNet, Inception-1.mp4 20.02M

├──11.循環(huán)神經(jīng)網(wǎng)絡(luò)RNN

| ├──GRU原理與實(shí)戰(zhàn).mp4 44.49M

| ├──lstm-1.mp4 33.94M

| ├──lstm-2.mp4 28.79M

| ├──LSTM實(shí)戰(zhàn).mp4 49.56M

| ├──課時(shí)108 序列表示方法-1.mp4 15.59M

| ├──課時(shí)109 序列表示方法-2.mp4 17.23M

| ├──課時(shí)110 循環(huán)神經(jīng)網(wǎng)絡(luò)層-1.mp4 13.93M

| ├──課時(shí)111 循環(huán)神經(jīng)網(wǎng)絡(luò)層-2.mp4 32.43M

| ├──課時(shí)112 RNNCell使用-1.mp4 14.79M

| ├──課時(shí)113 RNNCell使用-2.mp4 11.67M

| ├──課時(shí)114 RNN與情感分類(lèi)問(wèn)題實(shí)戰(zhàn)-加載IMDB數(shù)據(jù)集.mp4 13.64M

| ├──課時(shí)115 RNN與情感分類(lèi)問(wèn)題實(shí)戰(zhàn)-單層RNN Cell.mp4 14.01M

| ├──課時(shí)116 RNN與情感分類(lèi)問(wèn)題實(shí)戰(zhàn)-網(wǎng)絡(luò)訓(xùn)練.mp4 12.99M

| ├──課時(shí)117 RNN與情感分類(lèi)問(wèn)題實(shí)戰(zhàn)-多層RNN Cel.mp4 14.11M

| └──梯度彌散與梯度爆炸.mp4 64.71M

├──12.自編碼器Auto-Encoders

| ├──課時(shí)119 無(wú)監(jiān)督學(xué)習(xí).mp4 14.06M

| ├──課時(shí)120 Auto-Encoders原理.mp4 45.04M

| ├──課時(shí)121 Auto-Encoders變種.mp4 13.86M

| ├──課時(shí)122 Adversarial Auto-Encoders.mp4 12.62M

| ├──課時(shí)123 Variational Auto-Encoders引入.mp4 14.20M

| ├──課時(shí)124 Reparameterization Trick.mp4 13.78M

| ├──課時(shí)125 Variational Auto-Encoders原理.mp4 19.16M

| ├──課時(shí)126 Auto-Encoders實(shí)戰(zhàn)-創(chuàng)建編解碼器.mp4 12.65M

| ├──課時(shí)127 Auto-Encoders實(shí)戰(zhàn)-訓(xùn)練.mp4 12.46M

| ├──課時(shí)128 Auto-Encoders實(shí)戰(zhàn)-測(cè)試.mp4 14.15M

| ├──課時(shí)129 VAE實(shí)戰(zhàn)-創(chuàng)建網(wǎng)絡(luò).mp4 14.20M

| ├──課時(shí)130 VAE實(shí)戰(zhàn)-KL Divergence計(jì)算.mp4 47.81M

| └──課時(shí)131 VAE實(shí)戰(zhàn)-訓(xùn)練與測(cè)試.mp4 20.54M

├──13.對(duì)抗生成網(wǎng)絡(luò)GAN

| ├──課時(shí)132 數(shù)據(jù)的分布.mp4 12.37M

| ├──課時(shí)133 畫(huà)家的成長(zhǎng)歷程.mp4 85.53M

| ├──課時(shí)134 GAN原理.mp4 18.09M

| ├──課時(shí)135 納什均衡-D.mp4 68.56M

| ├──課時(shí)136 納什均衡-G.mp4 34.57M

| ├──課時(shí)137 JS散度的缺陷.mp4 34.46M

| ├──課時(shí)138 EM距離.mp4 47.49M

| ├──課時(shí)139 WGAN-GP原理.mp4 124.68M

| ├──課時(shí)140 GAN實(shí)戰(zhàn)-.mp4 17.29M

| ├──課時(shí)141 GAN實(shí)戰(zhàn)-2.mp4 27.19M

| ├──課時(shí)142 GAN實(shí)戰(zhàn)-3.mp4 15.12M

| ├──課時(shí)143 GAN實(shí)戰(zhàn)-4.mp4 16.08M

| ├──課時(shí)144 GAN實(shí)戰(zhàn)-5.mp4 12.92M

| ├──課時(shí)145 GAN實(shí)戰(zhàn)-6.mp4 14.34M

| ├──課時(shí)146 WGAN實(shí)戰(zhàn)-1.mp4 16.97M

| └──課時(shí)147 WGAN實(shí)戰(zhàn)-2.mp4 20.74M

├──14.【選看】人工智能發(fā)展簡(jiǎn)史

| ├──課時(shí)148 生物神經(jīng)元結(jié)構(gòu).mp4 5.87M

| ├──課時(shí)149 感知機(jī)的提出.mp4 13.56M

| ├──課時(shí)150 BP神經(jīng)網(wǎng)絡(luò).mp4 68.15M

| ├──課時(shí)151 CNN和LSTM的發(fā)明.mp4 65.62M

| ├──課時(shí)152 人工智能低谷.mp4 59.45M

| ├──課時(shí)153 深度學(xué)習(xí)的誕生.mp4 14.61M

| └──課時(shí)154 深度學(xué)習(xí)的爆發(fā).mp4 94.11M

├──15.【選看】Numpy實(shí)戰(zhàn)BP神經(jīng)網(wǎng)絡(luò)

| ├──課時(shí)155 權(quán)值的表示.mp4 35.99M

| ├──課時(shí)156 多層感知機(jī)的實(shí)現(xiàn).mp4 14.03M

| ├──課時(shí)157 BP神經(jīng)網(wǎng)絡(luò)前向傳播.mp4 14.57M

| ├──課時(shí)158 BP神經(jīng)網(wǎng)絡(luò)反向傳播-1.mp4 14.51M

| ├──課時(shí)159 BP神經(jīng)網(wǎng)絡(luò)反向傳播-.mp4 13.81M

| ├──課時(shí)160 BP神經(jīng)網(wǎng)絡(luò)反向傳播-3.mp4 13.82M

| ├──課時(shí)161 多層感知機(jī)的訓(xùn)練.mp4 15.98M

| ├──課時(shí)162 多層感知機(jī)的測(cè)試.mp4 19.15M

| └──課時(shí)163 實(shí)戰(zhàn)小結(jié).mp4 12.16M

├──電子書(shū)

| ├──花書(shū)-深度學(xué)習(xí)-Eng.pdf 15.91M

| └──花書(shū)-中文版.pdf 30.77M

└──軟件資料

| ├──課程安裝軟件-Ubuntu 18.04

| | ├──Anaconda3-2019.03-Linux-x86_64.sh 654.13M

| | ├──cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb 1.55G

| | ├──cudnn-10.0-linux-x64-v7.5.0.56.tgz 412.76M

| | └──pycharm-community-2019.1.1.tar.gz 317.09M

| └──課程安裝軟件-Win10

| | ├──Anaconda3-2019.03-Windows-x86_64.exe 661.66M

| | ├──cuda_10.0.130_411.31_win10.exe 2.04G

| | ├──cudnn-10.0-windows10-x64-v7.5.0.56 (1).zip 213.78M

| | └──pycharm-community-2019.1.1.exe 231.79M

 

深度學(xué)習(xí)與TensorFlow 2入門(mén)實(shí)戰(zhàn)百度網(wǎng)盤(pán)

深度學(xué)習(xí)與TensorFlow 2入門(mén)實(shí)戰(zhàn)百度網(wǎng)盤(pán)插圖1

React18+TS+NestJS+GraphQL 全棧開(kāi)發(fā)在線(xiàn)教育平臺(tái)

React18+TS+NestJS+GraphQL 全棧開(kāi)發(fā)在線(xiàn)教育平臺(tái)

深度學(xué)習(xí)與TensorFlow 2入門(mén)實(shí)戰(zhàn)

0
沒(méi)有賬號(hào)? 忘記密碼?